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The theory of nonsymmetrical elastlcity was first studied in paper [1]. A
modern dirivation of the equations of the theory and an account of its basis
may be found in [2 and 3].

1., To describe the state of stress in the medlum, we introduce, follow~-
ing [1 to 3], a dyadlc of couple-stresses y 1in addition to the stress
dyadic ¢ . The components of the stress dyadic represent forces acting on
a unit area of the corresponding cross-section, whereas the couple-stress
dyadlc represents a moment acting on a unit area of the same cross-section,
To describe the displacements of particles of the medium, we introduce a
field of rotations @, which 1s kinematically independent of the usual dis-
placement field u . The stress dyadlc and the couple-stress dyadic satisfy
equations of equilibrium, which in the absence of body forces and moments
have the form (2 and 3]

V= 0, Vp+ =0 (1)

Here ¥ 1is the differential operator of Hamilton and t, denotes the
vector invarilant of the stress dyadic « [4].

We next introduce the deformation dyadics A and M . For small u and
W@ they are defined as follows [3] :

A=Vu+Ixo, M=vVD (I 1is unit dyadic) (1.2)

The connection between stresses and deformations for the isotroplc elastlc
medium 1s given by the generalized Hooke's law

€ =AIl-. At + 2uA* 4 20A7, p =BII. Mt - 2yM+ 4 2eM~ (1.3)
which contains six elastic constants g, B, v, €3 W, A, Whereby u and
are the usual Lamé constants. In the relations t1.3) a plus superscript
denotes symmetric components of the dyadic and a milnus superscript denotes
antisymmetric components,

2. We examine an elastic body under condition of plane deformation, We
set
u=1iu (xy y) 4+ Jv (xr le): ® = kO (xl y) (2‘1)
where 1, J, k are unit vectors along the x, y, z axes of a rectangular
Carteslan system of coordinates.
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The nonvanishing components of the A &and M dyadlcs in this case are

du v D
Axx:a;;v Axyz&;;_@’ szza.
(2.2)
Ju v oD
Ayx:@‘/i"q)y Ayyzgg: Myzza
It 1s not difficult to verify that the following identities among the
remaining elements of the deformation dyadics are valid 2.3)
My I yx 0Ayy OAxy oM, My,
or oy Mez =0 dx oy Mye =00 57— 5y =0 @4

They represent the conditilons of compatibility of deformations for the
particular case of plane deformation. Conditions (2.3) and (2.4) coincide
with the corresponding conditions of [5]. Many components of the A and
M dyadics vanish; hence the Hooke's law relations greatly simplify

Tox = A (Ayx -+ Ayy) -+ EHAxxr Tyy = A (Axx + Ayy) + 2HAyy
Ty == 1 (Axu - Ayx) 1 a (Axy — Ayx): Tyx = P (Axy + A —a (Axy - Ayx)
Toz = A {Axx + Ay, Tz = Tyz = Tox = Tz =0 (2.5)

Bz = (7 -1+ €) My, Pyz = (17 + e) Myzy Pzy = (T — 8 My, py = (v — ) Myz

By virtue of (2.2) and (2.5), the components of the stress dyadlc and the
couple~stress dyadic do not depend on the 2 coordinate, Hence the equations
of equilibrium reduce to the system

yx | OTyx 0y | 0Ty Mz | Opyz _ . _
Fra + dy 0, o + dy =0, oz + Ay F Ty — T =0 (2.6
Solving the i{ooke's law relatlonships for the componentsof A and M , we
obtain 1 1
Agx = om [t — ¥ (Tex + Ty) ] Apy = 55 [tyy — % (Txx + 7)1 (2.8)
Toy + Tyx ;| Tay — Tux _ TaytTux  Txy — Tyx
Axy = 4p + 4a ? Ayx = 4p 4a 29

1 1 A
M= 1+ elaz My, = ¥ ¢ Bz v= m (2.10)

Here v 1s Poisson's ratio. The components of the stress dyadic and the
couple~stress dyadic which do not enter into (2.6) to (2.10) can be expressed
in terms of those components that do enter into these relations

. T—¢ T
Tor =V (Tax T Tyyhr Bax = 77 ghan Bay = g g Buz (2.11)

Substituting Expressions (2.8), (2.9), (2.10) into (2.3) and (2.%), we
obtain

& [Tay + T Ty — Ty __1_2[ _ , ]__ Paz
= ( xy i ux __ Vxy o~ x) %0 By Tax vV (Txx 4 Ty T+ e 0 (2.12)
1 0 O (Tey - Tyx | Txy — "Ux) T S ,
o 3z [vyy — v (Txx + )] — ay (T + 4a T+ e 0 (2.13)
Myz _ Waxz _ (2.14)

ox oy
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The six equations (2.6),and (2.12) to (2.14) form a complete system of
equations in terms of stresses for the case of plane deformation.

Following [5 and 6], we express the stresses and the couple-stresses in
terms of two stress functions

g P & b Y

TS e Tamdyr WS TameyrteTa G
e &y Po | Y )

W T o T T amay T ambu=gy (19

A stralghtforward calculation shows that the equations of equilibrium
(2.6) and conditions (2.14) are satisfied identically.

Substitution of Expressions (2.15) and (2.16) into (2.12) and (2.13) for
the determination of the stress functions ¢ and § glves

E)
Zp— ) = — 21— ) B T (2.47)
a
a%(w — BUM) = 2 (1 —v) 12 52 Ve (2.18)
where
B=(v+¢& @Wpd Y0, 2= (142 /4 (2.19)

We differentlate the first equatlon with respect to y , the second with
respect to x , and subtract one equation from the other.

We obtain a biharmonic equatlion for the stress function o

In a similar fashlon we obtain an equation for
VE@ — BV =0 (2.21)

It should be noted that although separate equations have been obtalned
for o and ¢ , thelr solutlons are nevertheless not arbltrary, but must be
chosen 1n such a way that Equations (2.17) and (2.18) are satisfied.

We likewise note that Equations (2.17) and (2.18) coincide with those in
(6] only when ¢ 1s infinitely large. Equations (2.20) and (2.21) in
essence coincide with the analogous equations of [5].

3. We examine the problem of the stress concentration in the neighbor-
hood of a circular hole in a simple tensile fleld. Namely, we assume that
the periphery of the hole r =g 13 free of stresses and couple-stress
and that at infinity we have the state of stress

Txx = P» Tyy = Tay = Tyx = Mae™ By = 0 (3.1

In the solution, we use a polar coordinate system (x=r coss, y=r sin g).
The stress functions ¢ and § must separately satisfy Equations

o2 1 0 1 &
V=0 Vig—ev =0 (V=gatogtaam) 6

In a polar coordinate system, Equations (2.17) and (2.18) take on the
form

d 1t
G @ — BVH) = 21— V) B 55 Vi 8.3)
1 0 0
— g0 W—BVH) =2 (1 —v) R 5 Vi

By the usual imnethods, we obtaln the following formulas for the components
of the stress dyadlc in a polar coordinate system (cf. [6
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1 » L@_i@ﬁw e 0 (1
= ar T R ar \ v 2x¥)v oo =5p T 7%?(‘7?“7;) (3.4)
__QL@%L@_L@ 9 (A o9\, ¢
0= "3r \r 0 r or a2 Tor —W(r ae)""ﬁ
109 1 oy
Bre =7 Mo: =" 39

The boundary conditions in the problem at hand are
for r=a
T, =0, T4=0 pn,=0 (3.5)
for r —» o0

T = YoP(1 4 cos 20), 75 = Ypp (1 — cos 20), Trp = Top = My = Pg, = 0 (3.6)
The stress functions satisfy conditions (3.8) and Equations (3.2) [6].

@ =1,pr2 (1 —cos20) -+ Aln r - (Br? -4 C)cos 20 (3.7)
b = [Dr2 < EK, (r/ })] sin 20
where X, 1s the modifled Bessel function of the second kind and second
order.
Substitution of (3.7) into (3.3) leads to the following restriction on the
coefficlents in the functions ¢ and y
D=8 —w hC (3.8)

Substituting (P.’g) into (3.4) and then into the boundary conditions (3.5),
we arrive, as in [6], at the following system of equations for the determi-
nation of the constants 4, B, ¢, D, F :

}4 A
ot e =0
P 4C 6 2ET 31 a 612 a
'?-F*Fw—m+ﬂ{7“@ﬂ+@+7VﬂTﬂﬂ
P 2C 6 E (61 a 122

—7““F—FW~D%PHPFKJT)+@+7ﬂK4%ﬂ=° @.9)

“ B {23+ (4 ) (]

The solution of this system, together with equation (3.8), has the form

pa? pat (1 — F) ___pa® . 4 (1 — V) a?h?p
A== B="gaxrR' °=zarmn P=7 1FF
palF
E=— AFEPNK @D (3.10)
whereby L
h? 2 2a K /DT
F=80—v i+ T ey (3.11)

Using these values of the constants we find for the stress Tgy on the
periphery of the hole
2 cos 26)

3+ F n
Tgg =P (1 -{——17_“[‘— (max Tgg=2"P T F for 6 = j:—z') (3.12)
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We introduce the stress concentratlon factor for the neighborhood of the

hole
6:max1’99 _3+F
p - 1+ F

(3.13)

From Formulas (3.11) and (3.,13) it is seen that the stress concentration
factor depends on the elastic constants of the materlal and the radilus of
the hole.

From (3.13) it is clear that the largest & 1s obtained for the smallest
F But from (3.11) it follows that the minimum value of F 1s zero and
that it is attained for 1Il-w, 1.e. for =0 . In this case one attalns the
classical value of § = 3 for the stress concentration factor.

The smallest & 1s attained at the largest # . But from (3.11) it fol-
lows that the maximum F 1s realized for a/l — oo, v=0, h =1, l,e.for g = =.
For these values of the parameters we obtaln p = 2 . Thus we find

8 =5/3 (3.14)

This is 1.8 times smaller than the classical value. For other, arbitrary
possible values of the classic constants of the material, the stress concen-
tration factor lles between the two limiting values found above,

BIBLIOGRAPHY

1. Cosserat, E. and F., Théorie des Corps Déformables, Paris, 1909,

2. Kuvshinskii, E.V. and Aero, E. L.' Kontinual'nala teorila asimmetricheskoi
uprugosti. Uchet vnutrennego' vrashchenlia (Continuum theory of axisal
symmetric elasticlty. Effect of the "internal” rotations). Fizika Tver-
dogo Tela, Vol.5, N2 9, 1963,

3. Pal'mov, V.A.,, Osnovnye uravnenlia teorli nesimmetrichnol uprugosti
(Fundamental equations of the theory of nonsymmetric elasticity).
PMM Vol.28, N 3, 1964,

L, Lagaléi, M., Vektornoe ischislenie (Vector Calculus). Gostekhlzdat,
1936.

5. Schaefer, H., Versuch einer ElastizitHtstheorle des zweldimensionalen
ebenen Cosserat-Kontinuums. Miszellanen der Angewandten Mechanlk.
Festschrift W,Tollimien, 1962.

6, Mindlin, R.D., Influence of Couple-stresses on Stress Concentrations.
Experimental Mechanics, Vol.3, ¥ 1, 1963.

Translated by E.E.Z,



